



Introduction



PROPELWIND is a concept development company working since 2008 on economically viable zeroemission vessels using primarily wind for their main propulsion, and based on successful technology from ocean sail racing combined with a robust shipowner experience



UPS has 534,000+ employees, 220+ countries and territories served, LY 6.4B packages delivered. 125K vehicles, 13,300+ alternative Fuel and Advanced Technology Vehicles, 585 owned and leased aircraft, 2,500+ global facilities, 28M+ square feet of automated facilities globally, \$100.3B Revenue



The UPS Foundation's philanthropic approach centers on four focus areas: health & humanitarian relief, equity and economic empowerment, local engagement and planet protection and has a history of supporting innovations. During the past decade, UPS has invested more than \$1 billion in alternative fuel and advanced technology vehicles. This study looked to identify if a sustainable ocean container transportation solution would provide a viable, scalable alternative to today's traditional ocean vessels.





Wind for main propulsion

- The "wind engine" is the rigid articulated wingsail
- Extreme hull aerodynamics
- Maximize speed in windy areas
- Maximize the areas where wind is feasible











Other energy users

- Green fuel for mechanical propulsion as back-up; reduced use allows for:
  - minimal inventory
  - fuel in tanktainers
  - safe storage (segregated compartment), overpressure protection
  - horizontal no-lift handling
- Auxiliary power for on board electrical loads (accommodations, navcoms, pumps, ..) from system with solar panels on wingsails (very large area) and batteries







Cargo

- Feasible cargo's:
  - containers
  - cars
  - project cargo
  - light bulk
- No maximum filling of the hull volume
- Smart handling equipment as part of the green concept package



#### **Statistical Tradelane Analysis**

![](_page_4_Picture_1.jpeg)

|    |                            | distance | aver. voyage | % time with | average | total MDO | duration statistic |          |
|----|----------------------------|----------|--------------|-------------|---------|-----------|--------------------|----------|
|    |                            | uistance | duration     | engine      | speed   | consumpt  | longest            | shortest |
| _  |                            | Nmiles   | days         | %           | kts     | t/voyage  | days               | days     |
| 1  | St Nazaire - New York      | 3 0 3 2  | 10,9         | 13,4%       | 11,7    | 6,1       | 13,3               | 8,7      |
| Ľ. | New-York - St Nazaire      |          | 9,6          | 9,2%        | 13,2    | 3,7       | 12,6               | 7,3      |
| 2  | Shanghai Los Angeles       | 5 660    | 18,4         | 10,0%       | 12,9    | 7,7       | 23,1               | 14,9     |
| 2  | Los Angeles - Shangshai    |          | 20,4         | 15,2%       | 11,6    | 12,9      | 25,4               | 17,0     |
|    | Anchorage - Panama         | 4 804    | 20,0         | 19,4%       | 10,0    | 16,2      | 23,2               | 16,7     |
| 3  | Panama - Anchorage         |          | 20,7         | 21,8%       | 11,6    | 12,9      | 25,4               | 17,0     |
|    | Los Angeles - Seattle      | 1 063    | 4,9          | 39,5%       | 9,0     | 8,1       | 5,9                | 3,5      |
| 4  | Seattle - Los Angeles      |          | 4,5          | 24,9%       | 9,8     | 4,7       | 6,3                | 2,9      |
| -  | Honolulu - San Francisco   | 2 0 9 1  | 8,0          | 17,1%       | 11,0    | 5,7       | 9,4                | 6,1      |
| 1  | San Francisco Honolulu     |          | 7,7          | 10,5%       | 11,3    | 3,4       | 9,7                | 6,2      |
|    | Jacksonville - Puerto Rico | 1 115    | 4,4          | 27,0%       | 10,5    | 5,0       | 5,9                | 2,9      |
| 6  | Puerto Rico - Jacksonville |          | 4.3          | 19.6%       | 10.9    | 3.5       | 5.6                | 3.1      |
| Γ. | Oostende - Puerto Rico     | 3 759    | 13,5         | 13,3%       | 11,6    | 7,5       | 16,0               | 11,2     |
| 1  | Puerto Rico - Oostende     |          | 12,6         | 11.4%       | 12,5    | 6,0       | 15,9               | 9,3      |

|   |                         |                            | reference ship |                    |                  | reduction factor |           |
|---|-------------------------|----------------------------|----------------|--------------------|------------------|------------------|-----------|
|   |                         |                            | size           | norm. speed<br>kts | eco speed<br>kts | normal speed     | eco speed |
|   |                         |                            | TEU            |                    |                  |                  |           |
|   | North Atlandic          | St Nazaire - New York      | 4 000          | 19,0               | 14,5             | 4,63             | 3,06      |
|   |                         | New-York - St Nazaire      |                |                    |                  | 7,62             | 5,02      |
| 1 |                         | St Nazaire - New York      | 10 000         | 21.0               | 15,0             | 3,49             | 1,73      |
|   |                         | St Nazaire - New York      |                | 21,0               |                  | 5,73             | 2,84      |
|   | North Pacific           | Shanghai Los Angeles       | 10 000 21,0    | 21.0               | 15,0             | 5,15             | 2,56      |
| 2 |                         | Los Angeles - Shangshai    |                | 21,0               |                  | 3,06             | 1,52      |
| 2 |                         | Shanghai Los Angeles       | 15 000         | 20,0               | 16,0             | 3,38             | 2,20      |
| _ |                         | Los Angeles - Shangshai    |                |                    |                  | 2,01             | 1,31      |
|   | N America<br>West Coast | Anchorage - Panama         | 2 000          | 17,4               | 14,0             | 3,43             | 2,14      |
| 3 |                         | Panama - Anchorage         |                |                    |                  | 4,29             | 2,68      |
|   | California Coast        | Los Angeles - Seattle      | 2 000          | 17,4               | 14,0             | 1,52             | 1,00      |
| 4 |                         | Seattle - Los Angeles      |                |                    |                  | 2,62             | 1,72      |
|   | California - Hawaii     | Honolulu - San Francisco   | 2 000          | 17,4               | 14,0             | 4,23             | 2,64      |
| 5 |                         | San Francisco Honolulu     |                |                    |                  | 7,12             | 4,44      |
|   | Florida - Puerto Rico   | Jacksonville - Puerto Rico | 2 000          | 17,4               | 14,0             | 2,58             | 1,61      |
| 0 |                         | Puerto Rico - Jacksonville |                |                    |                  | 3,68             | 2,30      |
| 7 | Europe - Puerto Rico    | Oostende - Puerto Rico     | 2 000          | 17,4               | 14,0             | 5,79             | 3,62      |
| ' |                         | Puerto Rico - Oostende     |                |                    |                  | 7,23             | 4,51      |

#### Main conclusions:

- Trades 3, 4 and 6 show engine use above 19% in both directions, too much to qualify for *wind for main propulsion* in line with IWSA's opinion: 15% engine use is considered as a maximum;
- With trades 1, 2, 5 and 7:
  - the difference between the average durations in the 2 directions is about 10%, but the slower direction requires about 50% more engine use;
  - the difference between the *longest* and the *shortest* durations is relatively small say about 50% of the smallest, allowing to consider efficiently a roundtrip operation and fleet based on the longest duration.
  - the required fuel on board is negligible (up to 12.9 t for 5,660 Nmiles) compared to the displacement (est. 6,000 t)
  - this quantity is less than the capacity of a standard 20 ft ISOTAINER (33 m<sup>3</sup>)

Source: UPS Foundation Research Study

Proprietary and Confidential: This presentation may not be used or disclosed to other than employees or customers, unless expressly authorized by UPS. 2023 United Parcel Service of America, Inc. UPS, the UPS brandmark and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

### **Vessel Statistics and Information**

![](_page_5_Figure_1.jpeg)

#### **Qualities**

- Wind propulsion used as the main н. power source
- н. Proven wing-sail design for maximum efficiency; significantly reducing the fuel requirement
- GHG footprint per TEU much smaller than large vessels
- Closed hull design to enclose and protect cargo during voyage
- No need for large port infrastructure allows for more creative routing and solutions

#### **Key Features**

- ✓ Average Speed 12.0 kts
- **250 TEU** Capacity  $\checkmark$
- ✓ Scale up to **600 TEU** Capacity
- $\checkmark$ Wind use – 88% of the time
- ✓ Closed hull to Protect Cargo
- ✓ Side Loading/Unloading
- ✓ Access to Smaller Ports

![](_page_5_Figure_16.jpeg)

a generic hull for containers, cars, project cargo's,...

![](_page_5_Figure_18.jpeg)

![](_page_5_Picture_19.jpeg)

Source: UPS Foundation Research Study https://propalwind.com Proprietary and Confidential: This presentation may not be used or disclosed to other than employees or customers, unless expressly authorized by UPS.© 2023 United Parcel Service of America, Inc. UPS, the UPS brandmark and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved. https://propelwind.com

![](_page_5_Picture_22.jpeg)

#### What are some of the sustainability and logistical benefits?

![](_page_6_Picture_1.jpeg)

![](_page_6_Picture_3.jpeg)

Port to Port

- Agile vessel routing reducing road mile transportation
- Not reliant on port cranes/large vessel infrastructure
- Avoiding port congestion / Labour disputes
- Self load from guay to vessel or barge to vessel
- Reduction of terminal handling costs

- Use of renewable energy for 90% of journey Less Fuel
- Clean Hydrogen Fuel Stored in compressed tanktainers
- Long Term Forecastable costs avoiding fuel fluctuations and carbon taxes
- Marine conservation zero underwater noise harmless to sea fauna
- Cargo Protection Fire and Overboard risk
- Reduced Operating Cost Crew & Insurance
- Refer operations supported renewable solar energy
- AI Wind Optimisation Technology proven routing software from ocean sail racing

|    |     | -   |    | <b>C</b> |       |   |
|----|-----|-----|----|----------|-------|---|
| Ва | rri | ers | το | Su       | ccess | 5 |
|    |     |     |    |          |       |   |

| Challenges                                         | Response                                                                                                                              |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Wind is not available everywhere                   | Impossible routes are limited to Europe – Asia and West Africa<br>Maximum aerodynamic efficiency broadens the range of possible areas |
| Wind propulsion is too slow                        | As an average, wind propulsion is faster than slow steaming                                                                           |
| Carriers continued strategy ULV and fuel choice    | Both for supply chain efficiency and on-time performance smaller providers have consistently provided a more reliability              |
| Wind is not economical                             | From all the decarbonization solutions, wind is the most effective for branding                                                       |
| Wind is for dreamers                               | Ask CARGILL, MICHELIN, MOL, YARA, NEOLINE, WALLENIUS, ALFA LAVAL, CANOPEE UPS                                                         |
| Wingsail area cannot be reduced in case of a storm | In-depth stability and seaworthiness studies, in accordance with rules<br>Routing to avoid areas with wind speed above 30 kts         |

# MOVING OUR WORLD FORWARD BY DELIVERING WHAT MATTERS

![](_page_7_Picture_1.jpeg)

## **FAST-TRACK TO ABSOLUTE ZERO EMISSIONS**

![](_page_7_Picture_3.jpeg)